Impacto da criatividade e da identidade científica nas competências de raciocínio científico dos alunos do ensino secundário.

Autores

DOI:

https://doi.org/10.55777/rea.v17i34.5918

Palavras-chave:

Creatividad, Destrezas de Razonamiento Científico, Educación Secundaria, Identidad Científica, Nivel Académico

Resumo

As competências de raciocínio científico são um elemento básico da literacia científica e são altamente relevantes no currículo atual. Os objectivos desta investigação centraram-se na avaliação destas competências e nos efeitos da criatividade geral, da criatividade científica e da identidade, do nível académico e do género nestas competências. Foi realizada uma investigação quantitativa ex post facto de carácter transversal. Participaram neste estudo 152 alunos (95 do sexo feminino e 57 do sexo masculino) do 3º e 4º anos do ESO e do 1º ano do Bachillerato (14-17 anos). Todos eles foram submetidos a um teste de criatividade, a um questionário sobre criatividade científica, a um questionário sobre identidade científica e a um questionário sobre capacidade de raciocínio científico. As pontuações obtidas e as análises de correlação, regressão múltipla e mediação sugerem que: a) o nível global das competências de raciocínio científico é baixo; b) as variáveis que mais influenciam a variabilidade destas competências são a identidade científica e o nível académico; e c) a identidade científica desempenha um papel mediador significativo entre a criatividade científica e as competências de raciocínio científico, o que mostra o efeito indireto da criatividade científica nestas competências.

Downloads

Não há dados estatísticos.

Biografias Autor

Jorge Fernández Vilanova, Universitat de València, España

Professor do Ensino Secundário e Mestre em Investigação em Didática Específica (Didática das Ciências Experimentais) pela Universitat de València. Apresentou várias comunicações relacionadas com a criatividade científica em conferências educativas e é autor de um capítulo de livro. Doutorando em Didática Específica na Universidade de Valência.

Joan Josep Solaz-Portolés, Universidad de Valencia, España

Professor de Didática das Ciências Experimentais na Universitat de València (Espanha). Diretor do grupo de investigação CDC/PCK da Universitat de València. Tem investigado sobre resolução de problemas, variáveis cognitivas e metacognitivas na aprendizagem das ciências e conhecimento didático do conteúdo. As suas actuais linhas de investigação são a criatividade científica, as competências de investigação científica e as crenças epistemologicamente injustificadas em estudantes e professores do ensino básico e secundário.

Vicente Sanjosé López, Universdiad de Valencia, España

Professor de Didática das Ciências Experimentais na Universitat de València (Espanha). Membro do grupo de investigação CDC/PCK da Universitat de València. É especialista em ensino das ciências e na formação inicial de professores de ciências, especialmente em compreensão, metacognição e resolução de problemas, bem como na utilização de dispositivos para observar processos mentais durante o desenvolvimento de tarefas académicas.

Referências

Aktamis, H., y Ergin, Ö. (2008). The effect of scientific process skills education on students' scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1), Article 4. https://www.eduhk.hk/apfslt/

An, D., y Runco, M. A. (2016). General and domain-specific contributions to creative ideation and creative performance. Europe's Journal of Psychology, 12(4), 523.-532. https://doi.org/10.5964/ejop.v12i4.1132

Aschbacher, P. R., Li, E., y Roth, E. J. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582. https://doi.org/10.1002/tea.20353

Baron, R. M., y Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173

Bybee, R. W. (2008). Scientific literacy, environmental issues, and PISA 2006: The 2008 Paul F-Brandwein lecture. Journal of Science Education and Technology, 17(6), 566–585. https://doi.org/10.1007/s10956-008-9124-4

Burgh, G. (2014). Creative and lateral thinking: Edward De Bono. In Encyclopedia of Educational Theory and Philosophy (Vol. 2, pp. 187-188). SAGE Publications, Inc., https://doi.org/10.4135/9781483346229

Ceci, M.W., y Kumar, V.K. (2015). A correlational study of creativity, happiness, motivation, and stress from creative pursuits. Journal of Happiness Studies, 17, 1–18. https://doi.org/10.1007/s10902-015-9615-y

Chen, B., Hu, W., y Plucker, J. A. (2014). The Effect of Mood on Problem Finding in Scientific Creativity. The Journal of Creative Behavior, 50(4), 308-320. https://doi.org/10.1002/jocb.79

Chen, S., y Wei, B. (2020). Development and Validation of an Instrument to Measure High School Students’ Science Identity in Science Learning. Research in Science Education, 52, 111–126. https://doi.org/10.1007/s11165-020-09932-y

Chi, S., Wang, Z., y Liu, X. (2019). Investigating disciplinary context effect on student scientific inquiry competence. International Journal of Science Education, 41(18), 2736-2764. https://doi.org/10.1080/09500693.2019.1697837

Clapham, M. M. (1997). Ideational skills training: A key element in creativity training programs. Creativity Research Journal, 10(1), 33-44. https://doi.org/10.1207/s15326934crj1001_4

Csikzentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. Harper Collins.

De Bono, E. (2010). Lateral thinking: A textbook of creativity. Penguin Adult.

De Jesus, S. N., Rus, C. L., Lens, W., y Imaginário, S. (2013). Intrinsic motivation and creativity related to product: A meta-analysis of the studies published between 1990–2010. Creativity Research Journal, 25(1), 80-84. https://doi.org/10.1080/10400419.2013.752235

DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE—Life Sciences Education, 8(3), 172-181. https://doi.org/10.1187/cbe.08-12-0081

Forrester, V., & Hui, A. (2007). Creativity in the Hong Kong classroom: What is the contextual practice? Thinking Skills and Creativity, 2(1), 30-38. https://doi.org/10.1016/j.tsc.2006.10.003

Gaborra, L. (2010). Revenge of the “nerds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 1–13. https://doi.org/10.1080/10400410903579494

Gallego, D. J., Alonso, C., y Vieira, D. M. (2022). Estilos de Aprendizaje y Estilos de Enseñanza. Propuestas pedagógicas para la transformación de la educación. Revista de Estilos de Aprendizaje, 15(Especial), 1-4. https://doi.org/10.55777/rea.v15iEspecial.5309

Harlen, W. (1999). Purposes and procedures for assessing science process skills. Assessment in Education: Principles, Policy & Practice, 6(1), 129-144. https://doi.org/10.1080/09695949993044

Hayes, A. F. (2013). Introduction to mediation, moderation and conditional process analysis. A regression based approach. The Guilford Press.

Hu, W., y Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912

Huang, C. F., y Wang, K. C. (2019). Comparative analysis of different creativity tests for the prediction of students’ scientific creativity. Creativity Research Journal, 31(4), 443-447. https://doi.org/10.1080/10400419.2019.1684116

Jia, X., Li, W., & Cao, L. (2019). The role of metacognitive components in creative thinking. Frontiers in psychology, 10, 2404. https://doi.org/10.3389/fpsyg.2019.02404

Jiménez, J. E., Artiles, C., Rodríguez, C., y García, E. (2003). Adaptación y baremación del test de pensamiento creativo de Torrance: expresión figurada. Educación Primaria y Secundaria. Consejería de Educación, Cultura y Deportes del Gobierno de Canarias.

Kim, M. (2018). Understanding children’s science identity through classroom interactions. International Journal of Science Education, 40(1), 24–45. https://doi.org/10.1080/09500693.2017.1395925

Krell, M., Redman, C., Mathesius, S., Krüger, D., y van Driel, J. (2020). Assessing pre-service science teachers’ scientific reasoning competencies. Research in Science Education, 50, 2305-2329. https://doi.org/10.1007/s11165-018-9780-1

LOMLOE (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-17264

Longo, C. (2010). Fostering Creativity or Teaching to the Test? Implications of State Testing on the Delivery of Science Instruction. The Clearing House, 83(2), 54-57. https://doi.org/10.1080/00098650903505399

Martínez‐Losada, C., y García‐Barros, S. (2005). Do Spanish secondary school teachers really value different sorts of procedural skills? International Journal of Science Education, 27(7), 827-854. https://doi.org/10.1080/09500690500038355

Meyer, A. A., y Lederman, N. G. (2013). Inventing creativity: An exploration of the pedagogy of ingenuity in science classrooms. School Science and Mathematics, 113(8), 400-409. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ssm.12039

Mumford, M.D., Medeiros, K.E., y Partlow, P.J. (2012). Creative thinking: Processes, strategies, and knowledge. Journal of Creative Behavior, 46(1), 30–47. https://doi.org/10.1002/jocb.003

Norris, S. P., Phillips, L. M., y Burns, D. P. (2014). Conceptions of scientific literacy: Identifying and evaluating their programmatic elements. In M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 1317-1344). Springer.

Organization for Economic Cooperation and Development (OECD). (2004). The PISA 2003 assessment framework: Mathematics, reading, science, and problem-solving knowledge and skills. OECD Publishing. https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/33694881.pdf

Organization for Economic Cooperation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. OECD Publishing. https://doi.org/10.1787/9789264026407-en

Organization for Economic Cooperation and Development (OECD). (2009). PISA 2009 assessment framework: Key competencies in reading, mathematics, and science. OECD Publishing. https://www.oecd.org/pisa/pisaproducts/44455820.pdf

Organization for Economic Cooperation and Development (OECD). (2013). PISA 2015. Draft science framework. https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf

Organization for Economic Cooperation and Development (OECD). (2019). PISA 2018. Assessment and Analytical Framwork. OECD Publishing. https://doi.org/10.1787/b25efab8-en

Organization for Economic Cooperation and Development (OECD). (2020). PISA 2024. Strategic vision and direction for science. OECD Publishing. https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf

Opitz, A., Heene, M., y Fischer, F. (2017). Measuring scientific reasoning–a review of test instruments. Educational Research and Evaluation, 23(3-4), 78-101. https://doi.org/10.1080/13803611.2017.1338586

Özgelen, S. (2012). Students’ science process skills within a cognitive domain framework. Eurasia Journal of Mathematics, Science and Technology Education, 8(4), 283-292. https://doi.org/10.12973/eurasia.2012.846a

Piekny, J. y Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain ‐general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31 (2), 153-179. https://doi.org/10.1111/j.2044-835X.2012.02082.x

Piraksa, C., Srisawasdi, N., y Koul, R. (2014). Effect of Gender on Students’ Scientific Reasoning Ability: A case study in Thailand. Procedia-Social and Behavioral Sciences, 116 (1), 486-491. https://doi.org/10.1016/j.sbspro.2014.01.245

Rodríguez, J., Solaz-Portolés, J. J., y Sanjosé, V. (2022). Efectos de la formación académica y del género sobre las destrezas de razonamiento científico de los estudiantes de secundaria: un estudio piloto. Espacios en blanco. Serie indagaciones, 32(1), 79-90. https://doi.org/10.37177/UNICEN/EB32-316

Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687. https://doi.org/10.1146/annurev.psych.55.090902.141502

Sawyer, R. K. (2021). The iterative and improvisational nature of the creative process. Journal of Creativity, 31, 100002. https://doi.org/10.1016/j.yjoc.2021.100002

Siew, N. M., Chong, C. L., y Chin, K. O. (2014). Developing a scientific creativity test for fifth graders. Problems of Education in the 21st Century, 62, 109-123. https://doi.org/10.33225/pec/14.62.109

Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equations models. Sociological Methodology, 13, 290-312. https://doi.org/10.2307/270723

Sternberg, R. J., y Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688. https://doi.org/10.1037/0003-066X.51.7.677

Sun, M., Wang, M., y Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682

Talavera, M., Hurtado, A., Cantó, J., y Martín, D. (2015). Valoración de la creatividad grupal y barreras del pensamiento creativo en universitarios. Revista de estilos de aprendizaje, 8(15), 70-90. https://doi.org/10.55777/rea.v8i15.1028

Uçar, F. M., y Sungur, S. (2017). The role of perceived classroom goal structures, self-efficacy, and engagement in student science achievement. Research in Science & Technological Education, 35(2), 149-168. https://doi.org/10.1080/02635143.2017.1278684

White, A. M., DeCuir-Gunby, J. T., y Kim, S. (2019). A mixed methods exploration of the relationships between the racial identity, science identity, science self-efficacy, and science achievement of African American students at HBCUs. Contemporary Educational Psychology, 57, 54-71. https://doi.org/10.1016/j.cedpsych.2018.11.006

Williams, M. M., y George-Jackson, C. (2014). Using and doing science: Gender, self-efficacy, and science identity of undergraduate students in STEM. Journal of Women and Minorities in Science and Engineering, 20(2). https://doi.org/10.1615/JWomenMinorScienEng.2014004477

Xue, Y., Gu, C., Wu, J., Dai, D. Y., Mu, X., y Zhou, Z. (2020). The effects of extrinsic motivation on scientific and artistic creativity among middle school students. The Journal of Creative Behavior, 54(1), 37-50. https://doi.org/10.1002/jocb.239

Yang, K. K., Lin, S. F., Hong, Z. R., y Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16–23. https://doi.org/10.1080/10400419.2016.1125270

Zhu, W., Shang, S., Jiang, W., Pei, M., y Su, Y. (2019). Convergent thinking moderates the relationship between divergent thinking and scientific creativity. Creativity Research Journal, 31(3), 320-328. https://doi.org/10.1080/10400419.2019.1641685

Revista de Estilos de Aprendizaje - Volumen 17, Número 34 (2024)

Publicado

2024-11-25

Como Citar

Fernández Vilanova, J., Solaz-Portolés, J. J., & Sanjosé López, V. (2024). Impacto da criatividade e da identidade científica nas competências de raciocínio científico dos alunos do ensino secundário. Revista De Estilos De Aprendizagem, 17(34), 1–13. https://doi.org/10.55777/rea.v17i34.5918