Impact of creativity and scientific identity on the scientific reasoning skills of secondary school students.

Authors

DOI:

https://doi.org/10.55777/rea.v17i34.5918

Keywords:

Creativity, Scientific Thinking Skills, Secondary Education, Scientific Identity, Academic Level

Abstract

Scientific reasoning skills are a basic element of scientific literacy and are highly relevant in today's curriculum. The aims of this research focused on the assessment of these skills and the effects of general creativity, scientific creativity and identity, academic level and gender on these skills. A quantitative ex post facto cross-sectional research was carried out. A total of 152 students (95 females and 57 males) in the 3rd and 4th years of ESO and 1st year of Bachillerato (14-17 years old) participated in this study. All of them were administered a creativity test, a questionnaire on scientific creativity, a questionnaire on scientific identity, and a questionnaire on scientific reasoning skills. The scores obtained and the correlation, multiple regression and mediation analyses suggest that: a) the overall level of scientific reasoning skills was low; b) the variables that most influenced the variability of these skills were scientific identity and academic level; and c) scientific identity played a significant mediating role between scientific creativity and scientific reasoning skills, which showed the indirect effect of scientific creativity on these skills.

Downloads

Download data is not yet available.

Author Biographies

Jorge Fernández Vilanova, Universitat de València, España

Teacher of Secondary Education and Master in Research in Specific Didactics (Didactics of Experimental Sciences) by the Universitat de València. He has presented several papers related to scientific creativity at educational conferences and is the author of a book chapter. PhD student in Specific Didactics at the University of Valencia.

Joan Josep Solaz-Portolés, Universidad de Valencia, España

Professor of Didactics of Experimental Sciences at the Universitat de València (Spain). Director of the CDC/PCK research group at the Universitat de València. He has researched on problem solving, cognitive and metacognitive variables in science learning and didactic knowledge of content. Her current lines of research are scientific creativity, scientific enquiry skills and epistemologically unjustified beliefs in students and teachers of primary and secondary education.

Vicente Sanjosé López, Universidad de Valencia, España

Professor of Didactics of Experimental Sciences at the Universitat de València (Spain). Member of the research group CDC/PCK at the Universitat de València. He is specialised in science teaching and initial science teacher training, especially in comprehension, metacognition and problem solving, as well as in the use of devices to observe mental processes during the development of academic tasks.

References

Aktamis, H., y Ergin, Ö. (2008). The effect of scientific process skills education on students' scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1), Article 4. https://www.eduhk.hk/apfslt/

An, D., y Runco, M. A. (2016). General and domain-specific contributions to creative ideation and creative performance. Europe's Journal of Psychology, 12(4), 523.-532. https://doi.org/10.5964/ejop.v12i4.1132

Aschbacher, P. R., Li, E., y Roth, E. J. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582. https://doi.org/10.1002/tea.20353

Baron, R. M., y Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173

Bybee, R. W. (2008). Scientific literacy, environmental issues, and PISA 2006: The 2008 Paul F-Brandwein lecture. Journal of Science Education and Technology, 17(6), 566–585. https://doi.org/10.1007/s10956-008-9124-4

Burgh, G. (2014). Creative and lateral thinking: Edward De Bono. In Encyclopedia of Educational Theory and Philosophy (Vol. 2, pp. 187-188). SAGE Publications, Inc., https://doi.org/10.4135/9781483346229

Ceci, M.W., y Kumar, V.K. (2015). A correlational study of creativity, happiness, motivation, and stress from creative pursuits. Journal of Happiness Studies, 17, 1–18. https://doi.org/10.1007/s10902-015-9615-y

Chen, B., Hu, W., y Plucker, J. A. (2014). The Effect of Mood on Problem Finding in Scientific Creativity. The Journal of Creative Behavior, 50(4), 308-320. https://doi.org/10.1002/jocb.79

Chen, S., y Wei, B. (2020). Development and Validation of an Instrument to Measure High School Students’ Science Identity in Science Learning. Research in Science Education, 52, 111–126. https://doi.org/10.1007/s11165-020-09932-y

Chi, S., Wang, Z., y Liu, X. (2019). Investigating disciplinary context effect on student scientific inquiry competence. International Journal of Science Education, 41(18), 2736-2764. https://doi.org/10.1080/09500693.2019.1697837

Clapham, M. M. (1997). Ideational skills training: A key element in creativity training programs. Creativity Research Journal, 10(1), 33-44. https://doi.org/10.1207/s15326934crj1001_4

Csikzentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. Harper Collins.

De Bono, E. (2010). Lateral thinking: A textbook of creativity. Penguin Adult.

De Jesus, S. N., Rus, C. L., Lens, W., y Imaginário, S. (2013). Intrinsic motivation and creativity related to product: A meta-analysis of the studies published between 1990–2010. Creativity Research Journal, 25(1), 80-84. https://doi.org/10.1080/10400419.2013.752235

DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE—Life Sciences Education, 8(3), 172-181. https://doi.org/10.1187/cbe.08-12-0081

Forrester, V., & Hui, A. (2007). Creativity in the Hong Kong classroom: What is the contextual practice? Thinking Skills and Creativity, 2(1), 30-38. https://doi.org/10.1016/j.tsc.2006.10.003

Gaborra, L. (2010). Revenge of the “nerds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 1–13. https://doi.org/10.1080/10400410903579494

Gallego, D. J., Alonso, C., y Vieira, D. M. (2022). Estilos de Aprendizaje y Estilos de Enseñanza. Propuestas pedagógicas para la transformación de la educación. Revista de Estilos de Aprendizaje, 15(Especial), 1-4. https://doi.org/10.55777/rea.v15iEspecial.5309

Harlen, W. (1999). Purposes and procedures for assessing science process skills. Assessment in Education: Principles, Policy & Practice, 6(1), 129-144. https://doi.org/10.1080/09695949993044

Hayes, A. F. (2013). Introduction to mediation, moderation and conditional process analysis. A regression based approach. The Guilford Press.

Hu, W., y Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912

Huang, C. F., y Wang, K. C. (2019). Comparative analysis of different creativity tests for the prediction of students’ scientific creativity. Creativity Research Journal, 31(4), 443-447. https://doi.org/10.1080/10400419.2019.1684116

Jia, X., Li, W., & Cao, L. (2019). The role of metacognitive components in creative thinking. Frontiers in psychology, 10, 2404. https://doi.org/10.3389/fpsyg.2019.02404

Jiménez, J. E., Artiles, C., Rodríguez, C., y García, E. (2003). Adaptación y baremación del test de pensamiento creativo de Torrance: expresión figurada. Educación Primaria y Secundaria. Consejería de Educación, Cultura y Deportes del Gobierno de Canarias.

Kim, M. (2018). Understanding children’s science identity through classroom interactions. International Journal of Science Education, 40(1), 24–45. https://doi.org/10.1080/09500693.2017.1395925

Krell, M., Redman, C., Mathesius, S., Krüger, D., y van Driel, J. (2020). Assessing pre-service science teachers’ scientific reasoning competencies. Research in Science Education, 50, 2305-2329. https://doi.org/10.1007/s11165-018-9780-1

LOMLOE (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-17264

Longo, C. (2010). Fostering Creativity or Teaching to the Test? Implications of State Testing on the Delivery of Science Instruction. The Clearing House, 83(2), 54-57. https://doi.org/10.1080/00098650903505399

Martínez‐Losada, C., y García‐Barros, S. (2005). Do Spanish secondary school teachers really value different sorts of procedural skills? International Journal of Science Education, 27(7), 827-854. https://doi.org/10.1080/09500690500038355

Meyer, A. A., y Lederman, N. G. (2013). Inventing creativity: An exploration of the pedagogy of ingenuity in science classrooms. School Science and Mathematics, 113(8), 400-409. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ssm.12039

Mumford, M.D., Medeiros, K.E., y Partlow, P.J. (2012). Creative thinking: Processes, strategies, and knowledge. Journal of Creative Behavior, 46(1), 30–47. https://doi.org/10.1002/jocb.003

Norris, S. P., Phillips, L. M., y Burns, D. P. (2014). Conceptions of scientific literacy: Identifying and evaluating their programmatic elements. In M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 1317-1344). Springer.

Organization for Economic Cooperation and Development (OECD). (2004). The PISA 2003 assessment framework: Mathematics, reading, science, and problem-solving knowledge and skills. OECD Publishing. https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/33694881.pdf

Organization for Economic Cooperation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. OECD Publishing. https://doi.org/10.1787/9789264026407-en

Organization for Economic Cooperation and Development (OECD). (2009). PISA 2009 assessment framework: Key competencies in reading, mathematics, and science. OECD Publishing. https://www.oecd.org/pisa/pisaproducts/44455820.pdf

Organization for Economic Cooperation and Development (OECD). (2013). PISA 2015. Draft science framework. https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf

Organization for Economic Cooperation and Development (OECD). (2019). PISA 2018. Assessment and Analytical Framwork. OECD Publishing. https://doi.org/10.1787/b25efab8-en

Organization for Economic Cooperation and Development (OECD). (2020). PISA 2024. Strategic vision and direction for science. OECD Publishing. https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf

Opitz, A., Heene, M., y Fischer, F. (2017). Measuring scientific reasoning–a review of test instruments. Educational Research and Evaluation, 23(3-4), 78-101. https://doi.org/10.1080/13803611.2017.1338586

Özgelen, S. (2012). Students’ science process skills within a cognitive domain framework. Eurasia Journal of Mathematics, Science and Technology Education, 8(4), 283-292. https://doi.org/10.12973/eurasia.2012.846a

Piekny, J. y Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain ‐general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31 (2), 153-179. https://doi.org/10.1111/j.2044-835X.2012.02082.x

Piraksa, C., Srisawasdi, N., y Koul, R. (2014). Effect of Gender on Students’ Scientific Reasoning Ability: A case study in Thailand. Procedia-Social and Behavioral Sciences, 116 (1), 486-491. https://doi.org/10.1016/j.sbspro.2014.01.245

Rodríguez, J., Solaz-Portolés, J. J., y Sanjosé, V. (2022). Efectos de la formación académica y del género sobre las destrezas de razonamiento científico de los estudiantes de secundaria: un estudio piloto. Espacios en blanco. Serie indagaciones, 32(1), 79-90. https://doi.org/10.37177/UNICEN/EB32-316

Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687. https://doi.org/10.1146/annurev.psych.55.090902.141502

Sawyer, R. K. (2021). The iterative and improvisational nature of the creative process. Journal of Creativity, 31, 100002. https://doi.org/10.1016/j.yjoc.2021.100002

Siew, N. M., Chong, C. L., y Chin, K. O. (2014). Developing a scientific creativity test for fifth graders. Problems of Education in the 21st Century, 62, 109-123. https://doi.org/10.33225/pec/14.62.109

Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equations models. Sociological Methodology, 13, 290-312. https://doi.org/10.2307/270723

Sternberg, R. J., y Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688. https://doi.org/10.1037/0003-066X.51.7.677

Sun, M., Wang, M., y Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682

Talavera, M., Hurtado, A., Cantó, J., y Martín, D. (2015). Valoración de la creatividad grupal y barreras del pensamiento creativo en universitarios. Revista de estilos de aprendizaje, 8(15), 70-90. https://doi.org/10.55777/rea.v8i15.1028

Uçar, F. M., y Sungur, S. (2017). The role of perceived classroom goal structures, self-efficacy, and engagement in student science achievement. Research in Science & Technological Education, 35(2), 149-168. https://doi.org/10.1080/02635143.2017.1278684

White, A. M., DeCuir-Gunby, J. T., y Kim, S. (2019). A mixed methods exploration of the relationships between the racial identity, science identity, science self-efficacy, and science achievement of African American students at HBCUs. Contemporary Educational Psychology, 57, 54-71. https://doi.org/10.1016/j.cedpsych.2018.11.006

Williams, M. M., y George-Jackson, C. (2014). Using and doing science: Gender, self-efficacy, and science identity of undergraduate students in STEM. Journal of Women and Minorities in Science and Engineering, 20(2). https://doi.org/10.1615/JWomenMinorScienEng.2014004477

Xue, Y., Gu, C., Wu, J., Dai, D. Y., Mu, X., y Zhou, Z. (2020). The effects of extrinsic motivation on scientific and artistic creativity among middle school students. The Journal of Creative Behavior, 54(1), 37-50. https://doi.org/10.1002/jocb.239

Yang, K. K., Lin, S. F., Hong, Z. R., y Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16–23. https://doi.org/10.1080/10400419.2016.1125270

Zhu, W., Shang, S., Jiang, W., Pei, M., y Su, Y. (2019). Convergent thinking moderates the relationship between divergent thinking and scientific creativity. Creativity Research Journal, 31(3), 320-328. https://doi.org/10.1080/10400419.2019.1641685

Revista de Estilos de Aprendizaje - Volumen 17, Número 34 (2024)

Published

2024-11-25

How to Cite

Fernández Vilanova, J., Solaz-Portolés, J. J., & Sanjosé López, V. (2024). Impact of creativity and scientific identity on the scientific reasoning skills of secondary school students. Journal of Learning Styles, 17(34), 1–13. https://doi.org/10.55777/rea.v17i34.5918