Impact of creativity and scientific identity on the scientific reasoning skills of secondary school students.
DOI:
https://doi.org/10.55777/rea.v17i34.5918Keywords:
Creativity, Scientific Thinking Skills, Secondary Education, Scientific Identity, Academic LevelAbstract
Scientific reasoning skills are a basic element of scientific literacy and are highly relevant in today's curriculum. The aims of this research focused on the assessment of these skills and the effects of general creativity, scientific creativity and identity, academic level and gender on these skills. A quantitative ex post facto cross-sectional research was carried out. A total of 152 students (95 females and 57 males) in the 3rd and 4th years of ESO and 1st year of Bachillerato (14-17 years old) participated in this study. All of them were administered a creativity test, a questionnaire on scientific creativity, a questionnaire on scientific identity, and a questionnaire on scientific reasoning skills. The scores obtained and the correlation, multiple regression and mediation analyses suggest that: a) the overall level of scientific reasoning skills was low; b) the variables that most influenced the variability of these skills were scientific identity and academic level; and c) scientific identity played a significant mediating role between scientific creativity and scientific reasoning skills, which showed the indirect effect of scientific creativity on these skills.
Downloads
References
Aktamis, H., y Ergin, Ö. (2008). The effect of scientific process skills education on students' scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1), Article 4. https://www.eduhk.hk/apfslt/
An, D., y Runco, M. A. (2016). General and domain-specific contributions to creative ideation and creative performance. Europe's Journal of Psychology, 12(4), 523.-532. https://doi.org/10.5964/ejop.v12i4.1132
Aschbacher, P. R., Li, E., y Roth, E. J. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582. https://doi.org/10.1002/tea.20353
Baron, R. M., y Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bybee, R. W. (2008). Scientific literacy, environmental issues, and PISA 2006: The 2008 Paul F-Brandwein lecture. Journal of Science Education and Technology, 17(6), 566–585. https://doi.org/10.1007/s10956-008-9124-4
Burgh, G. (2014). Creative and lateral thinking: Edward De Bono. In Encyclopedia of Educational Theory and Philosophy (Vol. 2, pp. 187-188). SAGE Publications, Inc., https://doi.org/10.4135/9781483346229
Ceci, M.W., y Kumar, V.K. (2015). A correlational study of creativity, happiness, motivation, and stress from creative pursuits. Journal of Happiness Studies, 17, 1–18. https://doi.org/10.1007/s10902-015-9615-y
Chen, B., Hu, W., y Plucker, J. A. (2014). The Effect of Mood on Problem Finding in Scientific Creativity. The Journal of Creative Behavior, 50(4), 308-320. https://doi.org/10.1002/jocb.79
Chen, S., y Wei, B. (2020). Development and Validation of an Instrument to Measure High School Students’ Science Identity in Science Learning. Research in Science Education, 52, 111–126. https://doi.org/10.1007/s11165-020-09932-y
Chi, S., Wang, Z., y Liu, X. (2019). Investigating disciplinary context effect on student scientific inquiry competence. International Journal of Science Education, 41(18), 2736-2764. https://doi.org/10.1080/09500693.2019.1697837
Clapham, M. M. (1997). Ideational skills training: A key element in creativity training programs. Creativity Research Journal, 10(1), 33-44. https://doi.org/10.1207/s15326934crj1001_4
Csikzentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. Harper Collins.
De Bono, E. (2010). Lateral thinking: A textbook of creativity. Penguin Adult.
De Jesus, S. N., Rus, C. L., Lens, W., y Imaginário, S. (2013). Intrinsic motivation and creativity related to product: A meta-analysis of the studies published between 1990–2010. Creativity Research Journal, 25(1), 80-84. https://doi.org/10.1080/10400419.2013.752235
DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE—Life Sciences Education, 8(3), 172-181. https://doi.org/10.1187/cbe.08-12-0081
Forrester, V., & Hui, A. (2007). Creativity in the Hong Kong classroom: What is the contextual practice? Thinking Skills and Creativity, 2(1), 30-38. https://doi.org/10.1016/j.tsc.2006.10.003
Gaborra, L. (2010). Revenge of the “nerds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 1–13. https://doi.org/10.1080/10400410903579494
Gallego, D. J., Alonso, C., y Vieira, D. M. (2022). Estilos de Aprendizaje y Estilos de Enseñanza. Propuestas pedagógicas para la transformación de la educación. Revista de Estilos de Aprendizaje, 15(Especial), 1-4. https://doi.org/10.55777/rea.v15iEspecial.5309
Harlen, W. (1999). Purposes and procedures for assessing science process skills. Assessment in Education: Principles, Policy & Practice, 6(1), 129-144. https://doi.org/10.1080/09695949993044
Hayes, A. F. (2013). Introduction to mediation, moderation and conditional process analysis. A regression based approach. The Guilford Press.
Hu, W., y Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912
Huang, C. F., y Wang, K. C. (2019). Comparative analysis of different creativity tests for the prediction of students’ scientific creativity. Creativity Research Journal, 31(4), 443-447. https://doi.org/10.1080/10400419.2019.1684116
Jia, X., Li, W., & Cao, L. (2019). The role of metacognitive components in creative thinking. Frontiers in psychology, 10, 2404. https://doi.org/10.3389/fpsyg.2019.02404
Jiménez, J. E., Artiles, C., Rodríguez, C., y García, E. (2003). Adaptación y baremación del test de pensamiento creativo de Torrance: expresión figurada. Educación Primaria y Secundaria. Consejería de Educación, Cultura y Deportes del Gobierno de Canarias.
Kim, M. (2018). Understanding children’s science identity through classroom interactions. International Journal of Science Education, 40(1), 24–45. https://doi.org/10.1080/09500693.2017.1395925
Krell, M., Redman, C., Mathesius, S., Krüger, D., y van Driel, J. (2020). Assessing pre-service science teachers’ scientific reasoning competencies. Research in Science Education, 50, 2305-2329. https://doi.org/10.1007/s11165-018-9780-1
LOMLOE (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-17264
Longo, C. (2010). Fostering Creativity or Teaching to the Test? Implications of State Testing on the Delivery of Science Instruction. The Clearing House, 83(2), 54-57. https://doi.org/10.1080/00098650903505399
Martínez‐Losada, C., y García‐Barros, S. (2005). Do Spanish secondary school teachers really value different sorts of procedural skills? International Journal of Science Education, 27(7), 827-854. https://doi.org/10.1080/09500690500038355
Meyer, A. A., y Lederman, N. G. (2013). Inventing creativity: An exploration of the pedagogy of ingenuity in science classrooms. School Science and Mathematics, 113(8), 400-409. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ssm.12039
Mumford, M.D., Medeiros, K.E., y Partlow, P.J. (2012). Creative thinking: Processes, strategies, and knowledge. Journal of Creative Behavior, 46(1), 30–47. https://doi.org/10.1002/jocb.003
Norris, S. P., Phillips, L. M., y Burns, D. P. (2014). Conceptions of scientific literacy: Identifying and evaluating their programmatic elements. In M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 1317-1344). Springer.
Organization for Economic Cooperation and Development (OECD). (2004). The PISA 2003 assessment framework: Mathematics, reading, science, and problem-solving knowledge and skills. OECD Publishing. https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/33694881.pdf
Organization for Economic Cooperation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. OECD Publishing. https://doi.org/10.1787/9789264026407-en
Organization for Economic Cooperation and Development (OECD). (2009). PISA 2009 assessment framework: Key competencies in reading, mathematics, and science. OECD Publishing. https://www.oecd.org/pisa/pisaproducts/44455820.pdf
Organization for Economic Cooperation and Development (OECD). (2013). PISA 2015. Draft science framework. https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf
Organization for Economic Cooperation and Development (OECD). (2019). PISA 2018. Assessment and Analytical Framwork. OECD Publishing. https://doi.org/10.1787/b25efab8-en
Organization for Economic Cooperation and Development (OECD). (2020). PISA 2024. Strategic vision and direction for science. OECD Publishing. https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf
Opitz, A., Heene, M., y Fischer, F. (2017). Measuring scientific reasoning–a review of test instruments. Educational Research and Evaluation, 23(3-4), 78-101. https://doi.org/10.1080/13803611.2017.1338586
Özgelen, S. (2012). Students’ science process skills within a cognitive domain framework. Eurasia Journal of Mathematics, Science and Technology Education, 8(4), 283-292. https://doi.org/10.12973/eurasia.2012.846a
Piekny, J. y Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain ‐general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31 (2), 153-179. https://doi.org/10.1111/j.2044-835X.2012.02082.x
Piraksa, C., Srisawasdi, N., y Koul, R. (2014). Effect of Gender on Students’ Scientific Reasoning Ability: A case study in Thailand. Procedia-Social and Behavioral Sciences, 116 (1), 486-491. https://doi.org/10.1016/j.sbspro.2014.01.245
Rodríguez, J., Solaz-Portolés, J. J., y Sanjosé, V. (2022). Efectos de la formación académica y del género sobre las destrezas de razonamiento científico de los estudiantes de secundaria: un estudio piloto. Espacios en blanco. Serie indagaciones, 32(1), 79-90. https://doi.org/10.37177/UNICEN/EB32-316
Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687. https://doi.org/10.1146/annurev.psych.55.090902.141502
Sawyer, R. K. (2021). The iterative and improvisational nature of the creative process. Journal of Creativity, 31, 100002. https://doi.org/10.1016/j.yjoc.2021.100002
Siew, N. M., Chong, C. L., y Chin, K. O. (2014). Developing a scientific creativity test for fifth graders. Problems of Education in the 21st Century, 62, 109-123. https://doi.org/10.33225/pec/14.62.109
Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equations models. Sociological Methodology, 13, 290-312. https://doi.org/10.2307/270723
Sternberg, R. J., y Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688. https://doi.org/10.1037/0003-066X.51.7.677
Sun, M., Wang, M., y Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682
Talavera, M., Hurtado, A., Cantó, J., y Martín, D. (2015). Valoración de la creatividad grupal y barreras del pensamiento creativo en universitarios. Revista de estilos de aprendizaje, 8(15), 70-90. https://doi.org/10.55777/rea.v8i15.1028
Uçar, F. M., y Sungur, S. (2017). The role of perceived classroom goal structures, self-efficacy, and engagement in student science achievement. Research in Science & Technological Education, 35(2), 149-168. https://doi.org/10.1080/02635143.2017.1278684
White, A. M., DeCuir-Gunby, J. T., y Kim, S. (2019). A mixed methods exploration of the relationships between the racial identity, science identity, science self-efficacy, and science achievement of African American students at HBCUs. Contemporary Educational Psychology, 57, 54-71. https://doi.org/10.1016/j.cedpsych.2018.11.006
Williams, M. M., y George-Jackson, C. (2014). Using and doing science: Gender, self-efficacy, and science identity of undergraduate students in STEM. Journal of Women and Minorities in Science and Engineering, 20(2). https://doi.org/10.1615/JWomenMinorScienEng.2014004477
Xue, Y., Gu, C., Wu, J., Dai, D. Y., Mu, X., y Zhou, Z. (2020). The effects of extrinsic motivation on scientific and artistic creativity among middle school students. The Journal of Creative Behavior, 54(1), 37-50. https://doi.org/10.1002/jocb.239
Yang, K. K., Lin, S. F., Hong, Z. R., y Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16–23. https://doi.org/10.1080/10400419.2016.1125270
Zhu, W., Shang, S., Jiang, W., Pei, M., y Su, Y. (2019). Convergent thinking moderates the relationship between divergent thinking and scientific creativity. Creativity Research Journal, 31(3), 320-328. https://doi.org/10.1080/10400419.2019.1641685
Downloads
Published
How to Cite
Issue
Section
License
By submitting the original, the author(s) declare that they are aware of and accept, in full, the privacy policy as well as the copyright of the Learning Styles Magazine.
The Learning Styles Magazine offers free and open access to its content, completely free of charge, in order to bring scientific research to its readers and society in general. All digital contents are free and open access and are published under a Creative Commons license:
Rights are granted under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional (CC-BY-NC-ND 4.0)
The Learning Styles Magazine is an open access journal. Publication of articles or reviews in the Journal does not entitle you to any remuneration. For authors as well as readers, the journal is free Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional (CC-BY-NC-ND 4.0).
With this licence, the reproduction and dissemination of the contents of the magazine for educational, social and knowledge transmission purposes is permitted, without any profit motive in mind, provided that the source and authorship are not modified. The licence granted to Learning Styles Magazine allows the copying and distribution of the magazine's contents, as long as the authorship of the work is recognised, correctly specifying the author and the publishing entity. The work may not be used for commercial purposes, nor may it be altered, transformed or generated from this work.
The publication of articles or reviews in the Journal does not give the right to any remuneration.
The Learning Styles Journal invites the author/authors to increase the visibility and scope of their articles published by re-disseminating them in:
- Web spaces and personal networks, as well as in scientific meetings and forums
- Open institutional archives in Universities, educational repositories and Research Centres.
- Academic and scientific networks (Researchgate, Academia.edu, Plubons, etc.)
All these spaces and publications must include all the bibliographic data of the publication.